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Climate change and California's mountain snow pack
—how much will we lose?
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Spring snowpack water varies greatly from year to year
but on average contains about 70% of the water stored in California’s Reservoirs

TOTAL WATER STORED (monthly)
in 12 major & 148 other California Reservoirs
with Statewide April 1 Snow-water contents
(stacked atop each other)
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Figure 1 Monthly totals of water stored in (dark blue) 12 major reservoirs and (light blue) 148 other, mostly smaller reservoirs, stacked
on top of each other, and (green bars) estimated statewide-total of water stored in April 1 snowpacks each year, January 1970 through
April 2015 Mike Dettinger, Mike Anderson

Dettinger, Michael D.; & Anderson, Michael L.(2015). Storage in California's Reservoirs and Snowpack in
this Time of Drought. San Francisco Estuary and Watershed Science, 13(2). jmie_sfews_27912.




2012-2015 dry spell is characteristic of
California’s volatile precipitation climate

Sacramento-Delta Region
Precipitation Oct-Sep

Sacramento Delta Drainage
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- California has a narrow
B seasonal window to
generate its annual
|| water supply.

u If atmospheric conditions are
s unfavorable during that
B period, a dry year results
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Nevada City daily temp| 18St 4 years in California—
1950-1999 climatology | preponderance of warm daytime
and nlght-time temperatures
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Temperature is only moderately correlated with California Snowpack
but lowest snow years tend to be quite warm
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Elevation (m)
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Western Snowpack declines continue
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a. Cascades b. Rockies, Colo-BC
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c. California d. Dry interior
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Snow losses (Apr 1) have occurred in lower (warmer) elevations as shown
directly from snow course observations (blue) and VIC model reanalysis (red)

Phil Mote and colleagues (2005)



Significance

CT Trends (1948 - 2008)
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FIG. 3. Trends in CT for each SDC. Trend values are given in days over the 61-yr period.
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Ceit Energy and Moisture Fiuxes
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To estimate water balance,
Including snow water

we use the Variable
Infiltration Capacity

(VIC) model,a land surface
hydrologic water/energy
accounting model.

VIC is run offline from GCMs or
RCMs, using downscaled
precipitation,temperature

and winds as input variables.

Most of the results
here are from VIC calculations

" run at 1/8° (12km), although

more recently we are using
a finer (1/16°) downscaling
and attendant VIC hydrology.

The GCMs, downscaling
and VIC simulations cover
1950-2100. They have
been run using 2 scenarios
of future GHG concentration,

SRES B1 and A2 or

wre RCP4.5and 8.5.

Liang, X., Lettenmaier, D.P., Wood, E.P., Burges, S.J., 1994. A simple hydrologically based model
of land surface water and energy fluxes for GSMs. J. Geophys. Res 99 (D7), 14415—-14428.




We considered 32 simulations
16 AR4 GCM’ s 16 A2 and 16B1
BCSD downscaled to 12 km

Map depicts elevation >800m
Sierra Nevada+ high terrain

Hydrology translated using
VIC (Variable Infiltration Capacity)
driven by downscaled
precipitation and temperature
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VIC modeled vs snow course (35 sites) observed April 1 SWE
correlation=0.97
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VIC snow accumulation agrees closely with observed snow course observations
variability of Apr 1 Snow Water Equivalent (SWE), VIC modeled vs. observations avg of 35 snow courses



California October-March Sierra temperature from climate simulations
32 BCSD (16 SRESA2 and 16 SRESB1)

7-year smoothed median: heavy black line

90th and 10th percentiles: light black lines
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change in snow water projected
for Sierra Nevada+ is substantial
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California October-March Sierra precipitation and

April 1 SWE from climate simulations
32 BCSD (16 SRESA2 and 16 SRESB1)
7-year smoothed median: heavy line
90th and 10th percentiles: light lines
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Linear regression—a good approximation for Calif spring SWE

Linear Regr Modeled Apr 1 SWE dashed, VIC modeled SWE dashed black
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Steady warming diminishes California spring SWE

Precipitation (ONDJFM) fluctuations: +10% Aprecip = £16% ASWE
but precip fluctuations are not trending

Temperature (ONDJFM) fluctuations: +1°C AT = -23% ASWE
temperature change is trending strongly

april 1 swe change from 1951-2010 cas

median of 32 BCSD (16 SRESA2 and 16 SRESB1)
swe from vic and 1951-2010 regression of vic oct-mar precip and temp

oct-mar contribution from:

temp
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Loss of California Spring Snowpack
from 218t Century warming
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*Under this scenario, Callfornla loses half of its spring (Apr|I 1) snow pack due to
climate warming. Less snow, more rain, particularly at lower elevations. The result is earlier
run-off, more floods, Less stored water. This simulation by Noah Knowles is guided by
temperature changes from PCM’ s Business-as-usual coupled climate simulation.
(this is a low-middle of the road emissions and warming scenario)

Knowles, N., and D.R. Cayan, 2002: Potential effects of global warming on the
Sacramento/San Joaquin watershed and the San Francisco estuary. Geophysical
Research Letters, 29(18), 1891.




regional snow and hydrolg—
a sensitive index of climate variation and change

% |2y Douglas Alden”
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% As climate warms
1960 2000 2040 2080 1960 2000 2040 2080| in this RCP 8.5
Snowfall SFE/P ensemble
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| all eight regions,
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climate change signal/noise in 2025

western U.S. snow and snow-related variables
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FIG. 15. Comparison of the climate change signal in 2025 (the change estimated by the least squares linear
trend in the indicated variable from 1950 to 2025; solid bars), noise (twice the autocorrelation-adjusted
standard error in the uncertainty in the trend; hollow bars), and SNR (red dots), averaged across snow
locations in the western United States for the RCP 4.5 scenario. Colors indicate the units of the variable
being considered: black (%), blue (8C), and green (days). The SNR (red dots; rightmost y axis) is
dimensionless, and so can be directly compared across all variables.  Pierce and Cayan 2013




California April 1 SWE from climate simulations
Odds a year is above the average historical median (11.86cm; 1961-1990)
32 BCSD (16 SRESA2 and 16 SRESB1) Median Apr 1 SWE 11.9cm

over 218t Century occurs a marked decline of chances of reaching

or exceeding historical median
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California April 1 SWE from climate simulations
Odds a year is below the historical 10th percentile (3.60cm; 1961-1990)

32 BCSD (16 SRESA2 and 16 SRESB1) 1(th 9, Apr 1 SWE 3.6cm
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RCP 8.5
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end-of-century April 1 SWE losses
in California occur mostly because
of increased rainfall (and
decreased snowfall), but are

\| compounded by
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David Pierce, D. Cayan 2013
2013: The uneven response of
different snow measures to
human-induced climate
warming. Journal of Climate




Projections indicate Increasing Flood Flows

50 year return period annual maximum 3-day floods
for both Northern (shown below) and Southern Sierra Nevada from VIC simulations

Northern Sierra Nevada
% change in 50-yrs floods (2% exceedence) some, not a”’
of flood flow
100 .
INCrease can
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o rain/snow and
snowmelt
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1945
1955
1965
1975
1985
1995
2005 |
2005 |
2026 |
2065 |
2075 |

Percentage change in 50-yrs (2% exceedence) flood discharge. The % change is computed with respect to the 50-yrs flood computed over
the period 1951-1999. The second, third and next on points are computed for the period with 10-yrs sliding period (e.g., the second point
represents change of the flood magnitude computed for the 1961-2009 period with respect to flood discharge computed in the period
1951-1999). The plot shows 25th, 50th and 75th percentiles from sixteen climate models from SRESA2 (red color curves) and SRESB1 (blue
color curves) simulations for Northern Sierra Nevada (left) and Southern Sierra Nevada (right). In the plot, black color curves show the %
change in 50-yrs flood with respect to historical flood (1951-1999) from VIC simulation as simulated by historical observed meteorologies
(Hamlet and Lettenmaier, 2005). 5% significant level computed using a long control simulation (750-yrs) from PCM1 is shown as dotted gray
lines. Numbers in the x-axis indicate the middle year of each 49-yrs time window used to compute the flood.

Das, T., M.D. Dettinger, D.R. Cayan and H.G. Hidalgo, 2011: Potential increase in floods in
California's Sierra Nevada under future climate projections. Climatic Change




median june 1 soil moisture
percent of historical (1971-2000) BCSD

16 SRESA2

Drier Summer Landscapes
increased warming and diminished snow
causes successively greater soil drying

throughout 21st Century
early 21st
(this picture could change somewhat under more
recent CMIP5 simulations)
middle 21st
late 21st

240°

Cayan etal. Ch6 Southwest Climate Assessment




since 1985 the number of large wildfires in western U.S. increased four-fold
relative to previous 15 years, mostly forest fires, not shrubland fires

Anthony Westerling et al. Science August 2006




large summer wildfires occur more often
in years with early/warm springs

Late Snowmelt Years Early Snowmelt Years

o
1972 - 2003, NPS, USFS & BIA Fires over 1000 acres
Area burned is proportional to size of red dots
The warming and earlier springs during last few decades have
extended and intensified the fire season in mid-elevation forests

Tony Westerling et al Science 2006




Summary

Variability of seasonal snowpack in western U.S. will continue to be strongly
Influenced by amount of winter/spring precipitation, but warmer temperatures
will play an increasing role.

In California, VIC hydrological simulations exhibit loss of aggregate spring
Snowpack that equates to- 23% Apr 1 SWE per +1°C of warming.

Snow and snowmelt hydrology is already changing:
Less snow, more rain
Diminished spring snow pack in' mid- and low elevations
Earlier run-off

Temperature related measures (like snow accumulation) have much stronger long term

change signal to shorter term variability'hoise than precipitation measures and thus are
more easily detected

These trends toward snow reduction will continue as climate warms. Consequences
are many, but include

Higher floods

Ecosystem impacts

Increased wildfire vulnerability

Potentially, less stored water



